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Local variations of the dynamic elastic modulus 
around running cracks 
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The variation of the dynamic elastic modulus in the immediate vicinity of the tip of the running 
crack was studied through an iterative procedure, based on the theoretical expressions for the 
stress-field components and the experimental relation between strain rate and elastic modulus. It 
was found that the elastic modulus varied strongly around the tip of the crack, both in radial and 
polar sense. Also it was observed that the polar distribution of the elastic modulus presented clear 
off-axis extrema in directions that were in good agreement with experimentally measured 
branching angles, thus indicating a possible relation between these two phenomena. 

1. In troduc t ion  
It is known that most mechanical properties of mater- 
ials show a strong dependence on strain rate. Attempts 
to relate strain rates with mechanical properties and 
especially with variations of elastic modulus were 
presented a few decades ago. For example, one of the 
most important experimental works is that by Mar- 
shall [1], who obtained the stress optical coefficient 
and the elastic modulus under dynamic loading condi- 
tions, whilst of the theoretical works that of Theocaris 
and Georgiades [2] should be mentioned. In general, 
however, the systematic exploitation of these results 
has been restricted, until now, mainly to the study of 
variations of dynamic fracture toughness, Ktac . 

In spite of this restriction, indications exist that 
many controversial phenomena, could be better 
understood if the relation between strain rate and 
mechanical properties was taken into account. Espe- 
cially, for the case of dynamic experiments where the 
imposed strain rates vary considerably, it is expected 
that adequate interpretation of experimental data re- 
quires consideration of the correct values of the mech- 
anical properties under the strain rates developed. 
This is by no means avoidable in the case of fast- 
running cracks, because the propagation of a crack is 
connected with strong spatial and time variations of 
the strain field and consequently of the values of the 
mechanical properties of the material. 

In the present study, an attempt was made to deter- 
mine quantitatively the variations imposed by strain 
rate on the elastic modulus in the immediate vicinity 
of running crack tips, and to connect the results with 
the phenomena of directional instability, such as crack 
bifurcation. 

2. Theoretical analysis 
Consider a crack propagating with constant velocity, 

c, normal to the externally applied load, i.e. under 
Mode I conditions, in a thin infinite elastic sheet. Be- 
cause the crack tip changes its position continuously, 
the stress field developed is time dependent. Hence, 
a stress- or, equivalently, a strain-rate field is estab- 
lished over the whole sheet. At any point P(ro, 0o) 
(Fig. 1) the instantaneous value of the dynamic 
modulus of elasticity, Ed, is defined, by convention in 
fracture mechanics, through the relation 

16(r, 0)] Ed-- ~ (1) 

where dots imply differentiation with respect to time 
and 6(r, 0), g(r, 0) represent the respective stress- and 
strain-rate components. The coordinates (r, 0) are 
functions of time, t, as follows 

r(t) = [y~+(Xo-Ct )2 ]  1/2, 0(t) = a r c t a n - -  Yo 

)c o -- ct 

(2a) 

C(Xo - ct) 
e(t) = - [y~ + (Xo - ctF] 1/=' 

1 + (Xo -- Ct) 2 
\ X o  -- c t /  J 

with (x 0, Y0) indicating the initial cartesian coordin- 
ates of point P relative to the moving system (Ox, Oy) 
(Fig. 1). At this point the normal components of the 
dynamic stress field, for Mode I loading conditions, 
are given through Freund and Clifton's formulae [3] 

Cyx~(r, 0) -- (2r~r),/2 B,(c)Qx(c ,O)  (3} 
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Figure 1 R e p r e s e n t a t i o n  of  the  g e o m e t r y  of  the  p r o b l e m .  (a) t = to, 

(b) t =  t o + A t .  

where 

1 +S~ 
B~(c)=4S~S2-(1 +S~) TM S1, 2 = 1 --(c/ci,2) 2 

I 4";>I F,,(c, O) = (1 + 2 S ~ - $ 2 ) f , ~ -  1 + ' 

I 4S1 $2 
F,y(c,O) = - ( 1  +S~) f , ,  ~+s{fZzJ 

{f/( c. f ~ l =  1 1 C~,2 ~n2 0 / ] 

[/( c. o)]},,. + cos O 1 2 sin 2 
C l , 2  

In these relations Kid is the instantaneous value of 
Mode I dynamic stress intensity factor and c~ and c2 
are the dilatational and distortional stress-wave vel- 
ocities, respectively. 

Differentiation of Equation 3 results, after some 
algebra, in the following expressions for the time de- 

rivatives of rr~x and %v 

K~ C(Xo - ct) 
(Txx = (2~r)1/2 2r 2 

• ( l + 2 s ~ - s 2 ) A ~  1 +  

fl + 2S;-S [   (Osin20 
+ (2re r) 1/2 . 2 f 1 [  12(l - 7sin 2 0) 3/2 

O(t) sin 0(1 -- 7 sin 2 O) -- 2()(t) y cos 2 0 sin O~ 
(i  7 ~ s i n 2 ~  J 

4,1,. , I   sin20 
1 + S~ 2f= 2(1 sin 2 0) 3/2 

O(t) sin 0(1 - 6 sin2 O) - 26(t) 6 c~ 0 sin 0 1 } ( 1 - 7  8ssin20) 7 

(3"yy - -  
I<~ C(Xo - ct) 

(2~r) 1/2 2 r 2 

2 4S1 $2 q 
• - (1 + s~)A1  + ~ - s J = [  

2 A 

Kr r6IOsin2O 

(4a) 

O(t) sin 0(1 - 7 sin 2 O) - 2()(t) 7 C0S2 0 sin O~ 
(1 - y sin 2 0) 2 J 

4S1S2 1 F _6()(t) sin 2_0 
1 + S 2 2J)2 l_2(1 - 8 sin 20) 3/2 

O(t)sinO(1-Ssin20)-20(t)6c~ ~ C ~ s i n 2 ~  

(4b) 

where 7 = c2/c~ and 6 = c2/c~. 
Under plane stress conditions, Equation 1 takes the 

form 

1 
~xx -- Ed [dxx ( r ,  O) - -  V(Yyy(r,O)] (5 )  

where v is the Poisson's ratio of the material. In the 
following text, for simplicity, the coordinates (r, 0) will 
be omitted. 

Equation 5 establishes a relationship between the 
five quantities d= ,  dyy, ~xx, v and E d. The first two of 
them are analytically known through Equations 4a 
and b. Also an experimental relationship between 
Gx and Ed is given by Theocaris and Andrianopoulos 
[4] for a wide range of strain-rate values and for two 
materials, PMMA and PCBA. A computer simulation 
of this curve for PMMA, by means of spline interpola- 
tion, is represented in Fig. 2. From the same series of 
experiments, it has been proved that the Poisson's 
ratio of both materials remains essentially constant 
versus strain rate. Thus, if we assign to v its mean 
value, only the respective value of Gx at every point 
and time must be known, in order to compute the 
value of Ed. Because, however, Equation 5 includes 
two unknown quantities (Ed and Gx), the following 
iterative procedure of successive approximations is 
established, with the aid of Equation 5 and Fig. 2. 
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Figure 2 A computer simulation of the experimental Ea = Ea(g~x) 
curve. 

(i) The static value, Est , is assigned to Ea. 
(ii) Initial values of stress-wave velocities ct and c2 

are obtained from the following equations [5] 

cl = {Ea/Eo(1 - v2)]} '/2 (6a) 

c2 = {Ea/[29(1 + v)]} t/2 (6b) 

where p is the mass density of the material. 
(iii) Equations 3 and 4 yield the initial values for the 

dynamic stresses and their time derivatives. 
(iv) A first approximation of ~ is obtained 

through Equation 5. 
(v) An improved value of Ea is obtained with the 

aid of Fig. 2 and an internal loop, including Steps (iv) 
and (v), is established until convergence of Ea values is 
obtained. 

(vi) The external loop begins again from Step (ii) by 
computing new improved values of c~ and cz through 
Equations 6a and b for the corrected value of Ea 
obtained in Step (v). 

3. Application and results 
The iterative method described above was applied for 
PMMA with a static value of elastic modulus 
Es~ = 3.4 x 108 Pa, initial stress-wave velocities 
cl ~ 1800ms -~, ca -~ 1030ms -x and the function 
Ed = Ed(ix=) given in Fig. 2. The maximum divergence 
allowed for c~ was 10 Pa and for c~ was 1 ms -~. The 
dynamic stress intensity factor, K~, was calculated by 
its static value and corrected with the appropriate 
velocity correction factor, K(c) [6]. Because only the 
Singular terms of Freund and Clifton's formulae have 
been used for the computation of the stress compo- 
nents, attention was paid to restrict our investigations 
in the immediate vicinity of the crack tip, i.e. in the 
region where air < 20 (a is the length of the crack). It 
was found that for the case of PMMA, the method 
converges fast enough. 

In Fig. 3a and b the variation of the dynamic elastic 
modulus and the respective strain rate, with continu- 
ous and dotted lines, respectively, is plotted versus 
time and reduced distance of the point from the crack 
tip, for a crack velocity equal to 0.35c2. The origin of 
time was taken as the moment at which the crack tip 
lies exactly below the studied point, P. 
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Figure 3 Dynamic modulus of elasticity and ( - - )  strain rate ver- 
sus time and reduced distance. (a) (xo, Yo)= (0.035a, 0). (b) 
(Xo, Yo) = (0.035a, 0.035aJ. 

The fixed point, P, in Fig. 3a has as initial coordin- 
ates (xo, Yo) = (0.035a, 0), i.e. it lies at a distance, x0, 
equal to 0.035a straight ahead of the initial crack-tip 
position. In this figure, both Ed and ~xx increase rather 
rapidly as the crack tip approaches the studied point 
P, and in the limit where the point P coincides with the 
crack tip, the strain rate tends to infinity and the 
dynamic modulus attains its ultimate dynamic value 
Ea = 55.9 x 108 Pa. Then, as the tip leaves the point 
P behind, there is a drop in the value of elastic 
modulus to its static value, Est, and of strain rate to 
zero, as expected. 

In Fig. 3b, the initial coordinates (x0, Y0) of point 
P are (0.035a, 0.035a). As is clear from this figure, the 
strain-rate curve presents at least two zeroing points 
in the region of validity of the singular Freund and 
Clifton's formulae, while at the same points the elastic 
modulus shows its minimum (static) value. It is worth 
noting that the first zeroing point does not correspond 
to the moment when the crack tip lies exactly below 
point P, but early enough. 

So, we observe that in the close vicinity of the crack 
tip, there exist points under a static elastic modulus 
together with points under highly dynamic values of 
the same modulus. 

Fig. 4 gives the instantaneous radial distribution of 
Ed along five characteristic angular directions and for 
a crack velocity equal to 0.35cz. As the distance from 
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Figure 4 Radial distribution of dynamic modulus of elasticity for 
some characteristic directions, t = constant, c = 0.35c2. 
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Figure 5 Polar distribution of dynamic modulns of elasticity at 
a distance r from the crack tip equal to 0.0375a. 

the crack tip increases. Ed drops monotonically from 
its maximum value E d = 55.9 X 1 0  8 Pa, common for 
all these directions, to its static value. It should be 
emphasized that the two outer curves, i.e. for 0 = 22.5 ~ 
and 54.0 ~ form a band of E d values, where for a given 
distance from the crack tip, the dynamic elastic 
modulus varies. The same conclusion may be drawn 
from Fig. 5, where the polar distribution of E d is 
plotted for two characteristic crack velocities, i.e. 
c = 0.35c2 and 0.50c2. It should be emphasized that 
due to symmetry, only the upper half of the curves has 
been plotted. The polar distribution exhibits seven 
axes of almost symmetry with period roughly equal to 
~/7, the exact value of it depending slightly on the 
crack velocity. Along these seven axes, where extreme 
values of Ed appear, the following condition is satisfied 

0&xx 
- 0 ( 7 a )  

80 

o r  

~2~xx 
- 0 ( 7 b )  

80�9 

or 

~2~ii 
- 0 (%) 

These equations can be considered as constituting 
a strain criterion for crack path deviation, because at 
points satisfying it, the highest spatial and time strain 
rates appear, provided also that a minimum value for 
Ea corresponds to these points. Really the closest to 
the crack-axis point satisfying Equation 7 and having 
a minimum value of Ed lies at a direction of about 
22.5 ~ to the crack axis (which only slightly depends on 
velocity), a value close enough to most experimental 
data for branching angles. 

The physical content of the above strain criterion is 
better understood taking into consideration that for 
a given load or stress level, the dilatational strain- 
energy density is higher, the higher are the normal 
strains, or the lower the elastic modulus becomes. 
However, according, to the T-criterion of fracture [7], 
the direction of maximum dilatational strain-energy 
density coincides with the direction at which cracks 
propagate. 

Ed=51 x l 0 8  Pa 
__ / Ed=53 x 108 Pa 

{ Crack 

Figure 6 Curves of equal value of dynamic modulus of elasticity, 
c = 0.35c 2. 

Identical conclusions to those of Fig. 5 can be ob- 
tained from Fig. 6, where curves of equal E~ values are 
plotted around the crack tip, i.e. the curves 
Ea = 55 x 108 , 53 x 108 and 51 x 108 Pa. For sym- 
metry reasons again, only the upper half of the curves 
is plotted. 

A similar conclusion supporting the present thesis 
concerning crack-path deviations has been proposed 
by Theocaris and Andrianopoulos [4], who stated 
that, due to the Variation of Ea during crack propaga- 
tion, the energy absorbed by the crack-propagation 
process may be lower or higher, when compared to its 
static value. Thus, in order to maintain the stable 
energy value, the crack will either accelerate or bifur- 
cate in the first case, or it will be momentarily deceler- 
ate and, at the extreme, it may be arrested, or stopped 
in the latter one. 

Finally, it should be emphasized that the only hy- 
pothesis involved in the present study is that concern- 
ing the linear elastic behaviour of the material, which 
is adopted in order for the Freund and Clifton stress 
formulae to be valid. However, especially for the case 
of PMMA, this hypothesis seems to be very tolerable. 

4. Conclusion 
As a concluding remark, we notice that an accurate 
description of the crack-path instability phenomena 
should take into account, beyond the assumed perfect 
structure of the material, the local inhomogeneities. 

451  3 



This term encompasses not only pre-existing struc- 
tural deviations but also those caused by the crack- 
propagation process itself. The former factor has been 
studied qualitatively by many investigators (the work 
by McClintock [8] and Ravi Chandar and Knauss [9"] 
is mentioned) and recently was simulated by a flexible 
quasi-macroscopic model by Theocaris et al. [10], 
resulting in theoretical predictions in very good agree- 
ment with experimental evidence. The second factor 
studied here, drives to compatible predictions, thus 
enforcing the central idea of a tight relationship be- 
tween crack-path instability and local inhomogeneity. 

In addition, recent studies [11] concerning the sec- 
ond factor producing local inhomogeneities, i.e. the 
temperature field created around the propagating tip, 
indicate that thermal phenomena, caused by crack 
propagation, work similarly, implying that a unified 
approach including pre-existing and produced local 
structural deviations, is required by the nature of the 
crack-path deviations phenomena in order to obtain 
a clear picture of the mechanisms governing its genesis 
and development. 
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